
MLPerf Training Benchmark
Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius 

Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor 
Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim 

Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, 
David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, 

Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, 
Taylor Robie, Tom St. John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, 

Masafumi Yamazaki, Cliff Young, and Matei Zaharia

MLSys 2020



Why MLPerf?



Why MLPerf?

Machine learning (ML) is changing whole industries such as
automotive safety, e-commerce, and medicine.

ML hardware is projected to be a ~$60B industry in 2025. 
(Tractica.com $66.3B, Marketsandmarkets.com: $59.2B)

Need a standard benchmark to provide the field/industry with 
clear metrics.



Prior Work

SPEC and TPC, consortium-backed standards but not ML 

DeepBench, but only ML primitives

Fathom and TBD, measure throughput for broad ML suite

DAWNBench, measure time-to-train for a few ML tasks

MLPerf = consortium + 
broad suite + 
time-to-train +   
novel contributions
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Goals

What:

Enable fair comparisons

Encourage innovation

Serve commercial and research communities

How:

Ensure reliable results

Keep benchmarking easy and affordable



MLPerf Training Benchmark



MLPerf Training benchmark definition

Target Quality

E.g. 75.9%Model

Dataset

E.g. ImageNet



Two divisions with different model restrictions

Dataset Target Quality

E.g. 75.9%ModelE.g. ImageNet

Closed division: specific model e.g. ResNet v1.5 → direct comparisons

Open division: any model → innovation



Benchmark suite
Area Task Dataset Model (closed) Target Quality (v0.5)

Vision Image recognition ImageNet ResNet 74.9% Top-1

Object detection COCO SSD 21.2 mAP

Object segmentation COCO Mask R CNN 37.7 Box mAp
33.9 Mask minAP

Language Translation WMT Eng.-German NMT 21.8 Sacre Bleu

Translation WMT Eng.-German Transformer 25.0 Bleu

Commerce Recommendation Movielens-20M NCF 0.635 HR @ 10

Research Go n/a Mini go 40.0% move prediction



Metric: time-to-train

Alternative is throughput 
Easy / cheap to measure

Higher throughput         Fewer epochs

Lower precision
Higher batch size

Higher precision
Lower batch size

But can increase throughput at 
cost of total time to train!

Time-to-train (end-to-end)
Time to solution!
Computationally expensive
High variance
Least bad choice



Time-to-train excludes

System initialization

Depends on cluster configuration and state 

Model initialization

Disproportionate for big systems with small benchmarking datasets

Data reformatting 

Mandating format would give advantage to some systems



Challenges and Contributions



ML Training benchmarking challenges

Diverse software stacks and 
hardware systems

● Can’t use the same 
executable

● Can’t use the same code Different scales and/or 
numerics require tuning

Convergence is stochastic



ML Training benchmarking challenges

Diverse software stacks and 
hardware systems

● E.g.: larger systems  → 
larger SGD mini batches 
→ different optimizer 
hyperparams

● Hyperparameter tuning is 
computationally 
expensive, can be unfair 

Different scales and/or 
numerics require tuning

Convergence is stochastic



ML Training benchmarking challenges

Diverse software stacks and 
hardware systems

● Random weight 
initialization

● Non-deterministic floating 
point effectsDifferent scales and/or 

numerics require tuning

Convergence is stochastic



Convergence variance: ResNet



Convergence variance: MiniGo



MLPerf contributions

Diverse software stacks and 
hardware systems

Reference implementations

Rules for reimplementation

Different scales and/or 
numerics require tuning

Convergence is stochastic



MLPerf contributions

Diverse software stacks and 
hardware systems

Reference implementations

Rules for reimplementation

Different scales and/or 
numerics require tuning

Limited tunable 
hyperparameters; limited 
values

Convergence is stochastic



List of tunable hyperparameters

Benchmark Tunable hyperparameters

All that use SGD Mini batch size, Learning-rate schedule parameters

ResNet-50 v1.5 --

SSD-ResNet-34 Maximum samples per training patch

Mask R-CNN Number of image candidates

GNMT Learning-rate decay function, Learning rate, Decay start, Decay interval, 
Warmup function, Warmup steps

Transformer Optimizer: Adam or Lazy Adam, Learning rate, Warmup steps

NCF Optimizer: Adam or Lazy Adam, Learning rate, β1, β2

MiniGo --



MLPerf contributions

Diverse software stacks and 
hardware systems

Reference implementations

Rules for reimplementation

Different scales and/or 
numerics require tuning

Limited tunable 
hyperparameters; limited 
values

Convergence is stochastic Require multiple runs

Drop low and high, average



Submission Process



Download reference implementation, read rules, 
join submitters working group 

Reimplement benchmark for system under test (SUT)

Submit logs from all runs, code, metadata in Github by deadline

Tune hyperparameters (allowed by list, to allowed values)

Run benchmark required number of times

Pre-submit



All submitters peer review all submissions, raise issues

Borrow hyperparameters from other submissions and 
resubmit if desired

MLPerf posts all results and 
makes logs, metadata, and code public under Apache-2

Post-submit





Results and Lessons Learned



Impact of good benchmarks

Better 
Software / HW

● Improved understanding of 
performance 

● Faster, more scalable 
software stacks

● Future hardware designs 
driven by best-of-breed ideas 

Benchmarks

● Defined set of problems

● Clear metrics 

Competition

● Competing engineering teams 
try different approaches

● Results show what works 
best



MLPerf Training: 16-chip speedup v0.5 to v0.6*

* Benchmark quality targets, and hence workload, increased in v0.6 for ResNet, SSD, GNMT



MLPerf Training, system scale increase v0.5 to 
v0.6



Lessons learned

● Benchmarking with reimplementation is possible
● Realistic dataset size is critical to ML performance benchmarking
● Hyperparameters are surprisingly portable at similar scales; 

borrowing works
● Low ratio of (standard deviation of epochs to train) : (mean epochs to 

train) is key to acceptable variance  
● Variance in time to train increases at high batch sizes
● Frameworks had differences in optimizers that impact convergence



Support and Adoption



MLPerf Support: Companies



MLPerf Support: Researchers



MLPerf Adoption: Press 



Work in Progress / Future Work



Future work

Expand and update benchmark suite

Improve rules: hyperparameter tables, out-of-the box division

More efficiency information: power, cloud cost

New suites: 
Inference (launched in 2019)
Mobile (launching in 2020)
HPC (in progress)
TinyML (in progress)

The next frontier: accuracy?



Shameless Plugs



“Benchmarking Machine Learning Workloads” 
Workshop Tomorrow

Keynote: 

MLPerf Inference

Vijay Janapa Reddi, Harvard

9:10 AM



MLPerf Training: Open Division needs you!

Want to Showcase faster models, compilers, 
pruners, data-set optimizers

Only need to use Dataset and Target to 
submit

Low overhead, low-risk exposure

Some assembly required



Plan for impact

Think big: conceive of your work as 10% of a larger whole

Great idea + coalition >> great idea alone

Build different skills sets

Make the world better



Summary



Summary

Introduced MLPerf training

Broad suite of tasks + time-to-train metric + consortium

Solved ML benchmarking challenges: diverse systems, scaling, variance

Results show MLPerf helps drive performance improvements

Achieved broad support/adoption: industry, academia, press

More to do! Join us: mlperf.org/get-involved or info@mlperf.org.


