MLPerf Training Benchmark

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff Young, and Matei Zaharia

Why MLPerf?

Why MLPerf?

Machine learning (ML) is changing whole industries such as automotive safety, e-commerce, and medicine.

ML hardware is projected to be a ~\$60B industry in 2025.

(Tractica.com \$66.3B, Marketsandmarkets.com: \$59.2B)

Need a standard benchmark to provide the field/industry with clear metrics.

Prior Work

SPEC and TPC, consortium-backed standards but not ML

DeepBench, but only ML primitives

Fathom and TBD, measure throughput for broad ML suite

DAWNBench, measure time-to-train for a few ML tasks

MLPerf = consortium +
broad suite +
time-to-train +
novel contributions

Goals

What:

Enable fair comparisons

Encourage innovation

Serve commercial and research communities

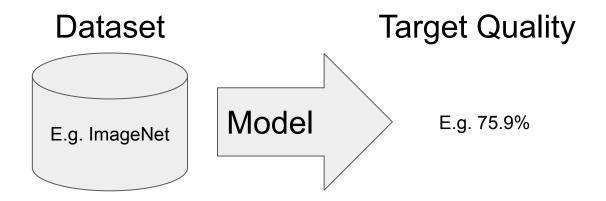
How:

Ensure reliable results

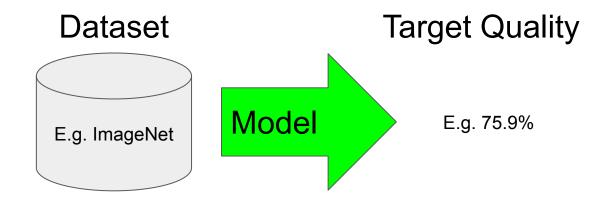
Keep benchmarking easy and affordable

MLPerf Training Benchmark

MLPerf Training benchmark definition



Two divisions with different model restrictions



Closed division: specific model e.g. ResNet v1.5 → direct comparisons

Open division: any model → innovation

Benchmark suite

Area	Task	Dataset	Model (closed)	Target Quality (v0.5)
Vision	Image recognition	ImageNet	ResNet	74.9% Top-1
	Object detection	COCO SSD		21.2 mAP
	Object segmentation	COCO	Mask R CNN	37.7 Box mAp 33.9 Mask minAP
Language	Translation	WMT EngGerman	NMT	21.8 Sacre Bleu
	Translation	WMT EngGerman	Transformer	25.0 Bleu
Commerce	Recommendation	Movielens-20M	NCF	0.635 HR @ 10
Research	Go	n/a	Mini go	40.0% move prediction

Metric: time-to-train

Alternative is throughput

Easy / cheap to measure

But can increase throughput at cost of total time to train!

Time-to-train (end-to-end)

Time to solution!

Computationally expensive

High variance

Least bad choice

Higher throughput Fewer epochs

Lower precision Higher precision

Higher batch size

Lower batch size

Time-to-train excludes

System initialization

Depends on cluster configuration and state

Model initialization

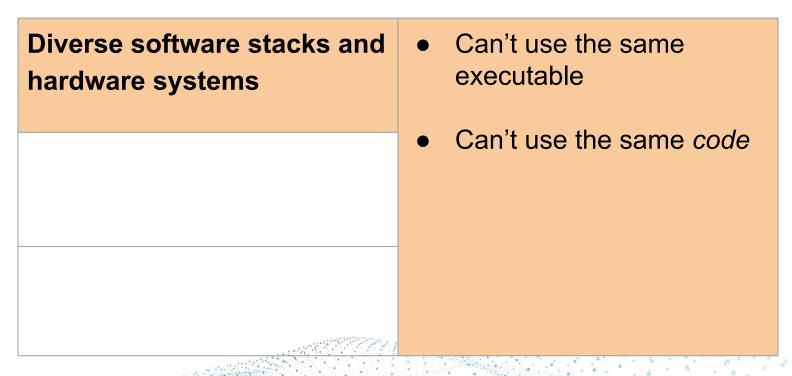
Disproportionate for big systems with small benchmarking datasets

Data reformatting

Mandating format would give advantage to some systems

Challenges and Contributions

ML Training benchmarking challenges



ML Training benchmarking challenges

Diverse software stacks and hardware systems

Different scales and/or numerics require tuning

- E.g.: larger systems →
 larger SGD mini batches
 → different optimizer
 hyperparams
- Hyperparameter tuning is computationally expensive, can be unfair

ML Training benchmarking challenges

Diverse software stacks and hardware systems

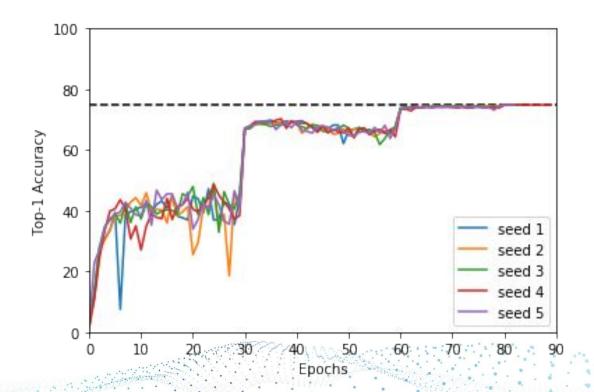
Different scales and/or numerics require tuning

Convergence is stochastic

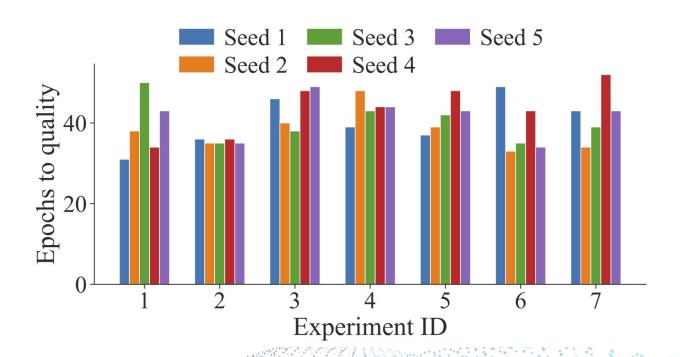
Random weight initialization

 Non-deterministic floating point effects

Convergence variance: ResNet



Convergence variance: MiniGo



MLPerf contributions

Diverse software stacks and hardware systems	Reference implementations Rules for reimplementation
Different scales and/or numerics require tuning	
Convergence is stochastic	

MLPerf contributions

Diverse software stacks and hardware systems	Reference implementations Rules for reimplementation				
Different scales and/or numerics require tuning	Limited tunable hyperparameters; limited values				
Convergence is stochastic					

List of tunable hyperparameters

Benchmark	Tunable hyperparameters
All that use SGD	Mini batch size, Learning-rate schedule parameters
ResNet-50 v1.5	
SSD-ResNet-34	Maximum samples per training patch
Mask R-CNN	Number of image candidates
GNMT	Learning-rate decay function, Learning rate, Decay start, Decay interval, Warmup function, Warmup steps
Transformer	Optimizer: Adam or Lazy Adam, Learning rate, Warmup steps
NCF	Optimizer: Adam or Lazy Adam, Learning rate, β1, β2
MiniGo	

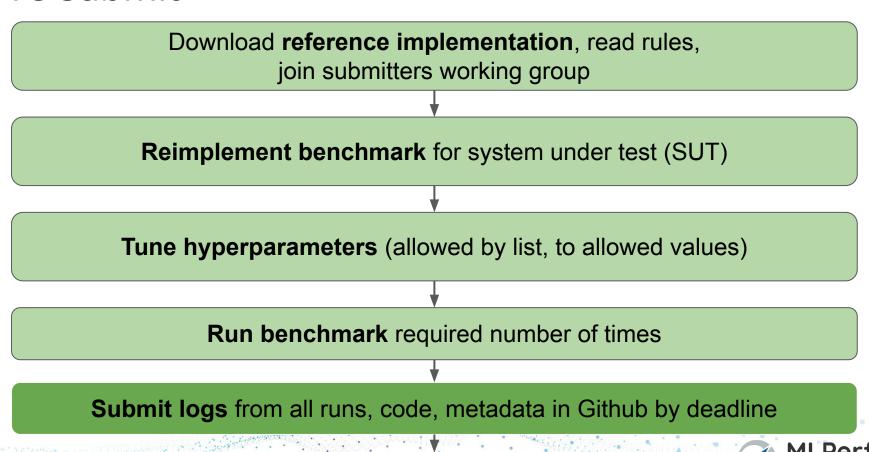
MLPerf contributions

Convergence is stochastic	Require multiple runs Drop low and high, average
Different scales and/or numerics require tuning	Limited tunable hyperparameters; limited values
Diverse software stacks and hardware systems	Reference implementations Rules for reimplementation

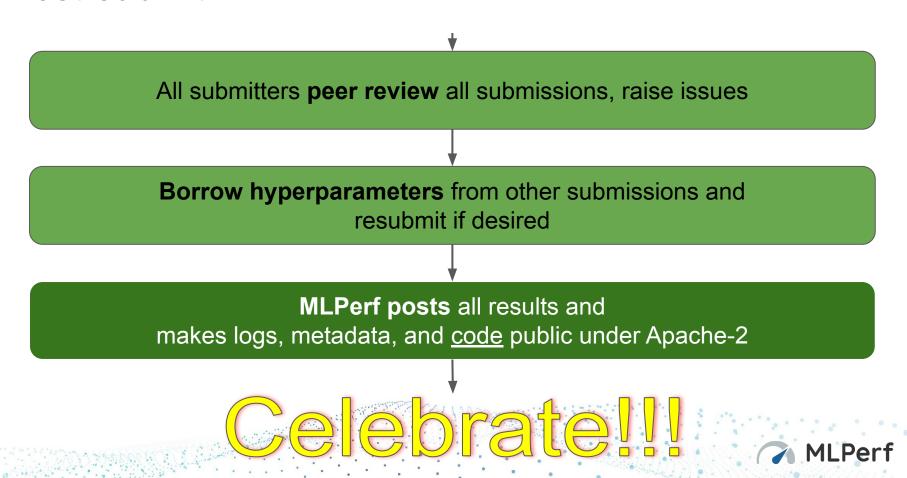
LPerf

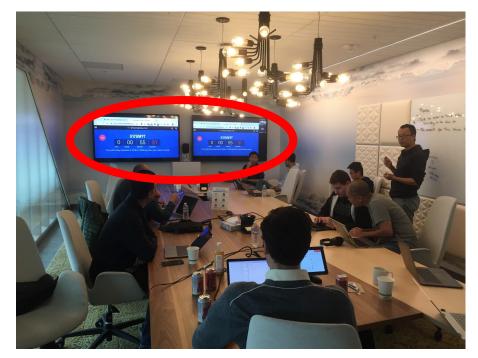
Submission Process

Pre-submit



Post-submit



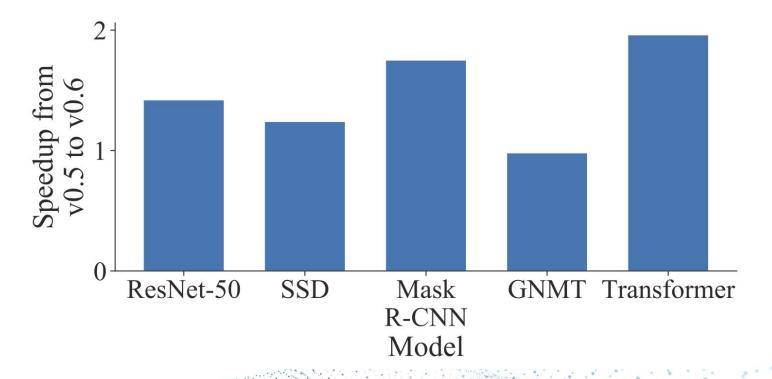


Results and Lessons Learned

Impact of good benchmarks

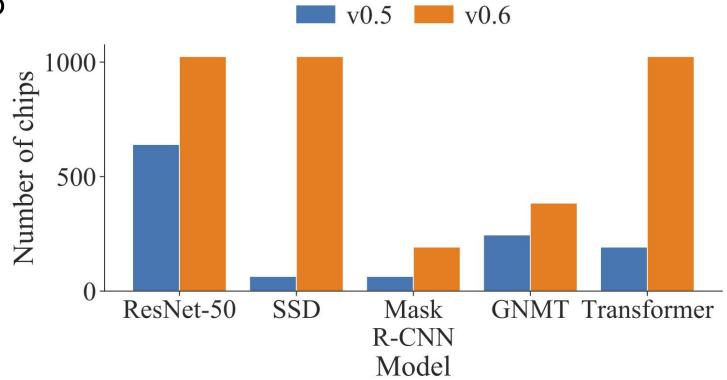
Benchmarks	Competition	Better Software / HW
Defined set of problems	 Competing engineering teams try different approaches 	 Improved understanding of performance
Clear metrics	 Results show what works best 	 Faster, more scalable software stacks
		 Future hardware designs driven by best-of-breed ideas

MLPerf Training: 16-chip speedup v0.5 to v0.6*



^{*} Benchmark quality targets, and hence workload, increased in v0.6 for ResNet, SSD, GNMLPerf

MLPerf Training, system scale increase v0.5 to v0.6



Lessons learned

- Benchmarking with reimplementation is possible
- Realistic dataset size is critical to ML performance benchmarking
- Hyperparameters are surprisingly portable at similar scales; borrowing works
- Low ratio of (standard deviation of epochs to train): (mean epochs to train) is key to acceptable variance
- Variance in time to train increases at high batch sizes
- Frameworks had differences in optimizers that impact convergence

Support and Adoption

MLPerf Support: Companies

Al Labs.tw 会灣人工發發實施室	Alibaba Group	™ DMA	ANDES	AONdevices	arm	Baide音度	Lenovo.	MEDIATEK	Graphics A Sierens Basiness	Microsoft	myrtle.ai	MYTHIC	■ NetApp
Al Labs.tw	Alibaba	AMD	Andes Technology	Aon Devices	Arm	Baidu	Lenovo	MediaTek	Mentor Graphics	Microsoft	Myrtle	Mythic	NetApp
cādence [°]	CALYPSO	<u>[en]aur</u>	(Cerebras	CEVA	*CIRRUS	ajtaja cisco	OVIDIA.	One Convergence	oppo	PATHPARTNER	PURESTORAGE	Qualcomm	rpa2ai Automation & Al Administration
Cadence	Calypso AI	Centaur Technology	Cerebras	Ceva	Cirrus	Cisco	NVIDIA	One Convergence	Oppo	PathPartner Technology	Pure Storage	Qualcomm	Rpa2ai
CODE	CRAY	cTuning Foundation	D≪LL EMC	$\frac{d\vec{v}}{dt}$	DDN° STORAGE	Edgify	S ambaNova	SAMSUNG Exynos	∑ SIGOPT	SiMa ^{ai.}	skymizer	SUPERMICR	SYNOPSYS'
Code Reef	Cray	CTuning Foundation	Dell	Dividiti	DDN Storage	Edgify	Sambanova	Samsung S.LSI	Sigopt	SiMa Al	Skymizer	Supermicro	Synopsys
Enflame	Esperanto TECHNOLOGIES	facebook	FURIOSA	Google	groq ⁻	∴ habana	Tencent 腾讯	TENSYR driving deplayment	TERADYNE	⟨⊕ Transpire Ventures	verifAl	♦ VMind	vm ware
Enflame Tech	Esperanto	Facebook	FuriosaAl	Google	Groq	Habana	Tencent	Tensyr	Teradyne	Transpire Ventures	VerifAl	VMind	VMware
Hewlett Packard Enterprise	Нор	地 平 线 Harton Rebetto	天教智さ RLIVetar CoreX	inspur	(intel) A	IQT.		√ volley.com	VAVE.	Wwwynn'	WEKA IO	£ XILINX	
Hewlett Packard Enterprise	Hop Labs	Horizon Robotics	Iluvatar	Inspur	Intel	In-Q-Tel		Volley	Wave Computing	Wiwynn	WekaIO	Xilinx	

MLPerf Support: Researchers

Stanford ENGINEERING

Berkeley

Cockeel School of Engineering

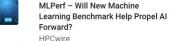
Harvard University Stanford University University of Arkansas, Littlerock University of California, Berkeley University of Illinois, Urbana Champaign University of Minnesota University of Texas, Austin

University of Toronto

MLPerf Adoption: Press

The Curious Case Of MLPerf Inferencing Benchmark Results

Forbes . Last month



Al Accelerators: TOPS is Not the Whole Story - EETimes

Intel unveils next-gen Movidius

Centaur Unveils an x86 SoC with

VPU, codenamed Keem Bay

Integrated AI Coprocessor

CNX Software . Last month

EE Times • 2 days ago

ZDNet · Last month

Al Gets Inference Benchmarks EE Times · Jun 24

Centaur announces new SoC

CPU with AVX512 support and an

Notebookcheck.net . Last month

MLPerf Releases Five Benchmarks

integrated 20 TOPS AI co-processor

Forbes . Last month

Intel, GraphCore And Grog: Let The Al Cambrian Explosion Begin

MLPerf Releases v0.6 Training

HPCwire · Jul 10

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

HPCwire . Last month

Achieve Fastest Results on MLPerf Edge Al Inference Performance EE Journal . Last month Centaur Releases In-Depth Analysis from

NVIDIA Turing GPUs and NVIDIA Xavier Benchmarks Measuring Data Center and

myrtle.ai to Develop a Speech Recognition Benchmark for MLPerf

HPCwire

It Is About Latency HPCwire · 9 days ago

The Next Platform

Forbes . Last month

Benchmark Crown

Xavier NX

Reading Between the MLPerf Lines

NVIDIA Gets Tiny With Jetson

Nvidia Crushes Self to Take Al

The MLPerf Consortium, with Members like ARM & Google, have introduced Tech Industry's First Standard ML Benchmark Suit

MLPerf benchmark results showcase Nvidia's top Al training times

Google Cloud and Nvidia Tesla set

new Al training records with MLPerf

ZDNet

NVIDIA Corp (NVDA) Q3 2019 **Earnings Call Transcript** The Motley Fool . Last month

EE Times India . Jun 26

Twitter wants help with deepfakes. and Microsoft Azure will rent out new AI chips for its cloud users, and more

The Register · Last month

Embedded Benchmark Calls for Support

EE Times · Jun 12

Startup Runs AI in Novel SRAM

Results

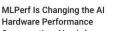
MLPerf To Provide Much Needed Clarity In The Field Of Machine Learning

Forbes • Jun 25

featuring an 8-core server-class x86

Digging into MLPerf Benchmark Suite to Inform Al Infrastructure Decisions

HPCwire · Apr 9



Hardware Performance Conversation, Here's how Data Center Knowledge · Aug 1

GPUs Continue to Dominate the Al Accelerator Market for Now InformationWeek . Last month

Nvidia tops Al inference benchmarks, also announces 'world's smallest supercomputer' chip for AI tasks

Firstpost · Last month

Why I joined MLPerf

EE Times · Mar 20

The Linley Group for World's First x86 Processor with AI Coprocessor Technology StreetInsider.com · 2 days ago

MLPerf Expands Toolset: Launches Inferencing Suite

HPCwire • Jun 24

Is Intel Considering Another Al Acquisition?

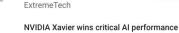
EE Times · 6 days ago

Benchmark Scores Reveal Who's Winning the Al Inference Race -**EETimes**

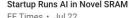
FF Times . Last month

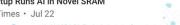
Google, Nvidia tout advances in Al training with MLPerf benchmark results

ZDNet · Jul 10



Who's Winning the Al Inference





benchmark results

Packt Hub . Jul 15

Work in Progress / Future Work

Future work

Expand and update benchmark suite

Improve rules: hyperparameter tables, out-of-the box division

More efficiency information: power, cloud cost

New suites:

Inference (launched in 2019)

Mobile (launching in 2020)

HPC (in progress)

TinyML (in progress)

The next frontier; accuracy?

Shameless Plugs

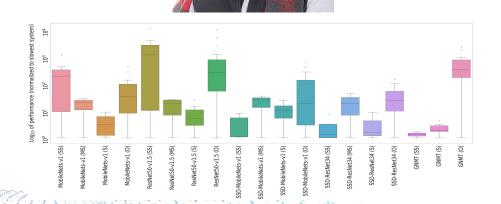
"Benchmarking Machine Learning Workloads" Workshop Tomorrow

Keynote:

MLPerf Inference

Vijay Janapa Reddi, Harvard

9:10 AM



MLPerf Training: Open Division needs you!

Want to Showcase faster models, compilers, pruners, data-set optimizers

Only need to use Dataset and Target to submit

Low overhead, low-risk exposure

Some assembly required

Plan for impact

Think big: conceive of your work as 10% of a larger whole

Great idea + coalition >> great idea alone

Build different skills sets

Make the world better

Summary

Summary

Introduced MLPerf training

Broad suite of tasks + time-to-train metric + consortium

Solved ML benchmarking challenges: diverse systems, scaling, variance

Results show MLPerf helps drive performance improvements

Achieved broad support/adoption: industry, academia, press

More to do! Join us: mlperf.org/get-involved or info@mlperf.org.

