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Motivation



Deep Learning was Enabled by Hardware
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CHALLENGES: ACCELERATING BIG AND SMALL
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Some History
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Kepler (2012)

3.95 TFLOPS (FP32)

250 GB/s
300W
28nm
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10.6 TFLOPS (FP32)
21.3 TELOPS (FP16)
FDP4

732 GB/s (HBM)
NVLink

300W

Pascal (2016)
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Tensor Cores!

15 TFLOPS (FP32)
125 TFLOPS (FP16)
HMMA

900 GB/s (HBM)
300 GB/s NVLink
300W
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FP16)

261 TOPs (Int8)

IMMA

(

Integer Tensor Cores!
(FP32)

65 TFLOPS
130 TFLOPS
672 GB/s (G5)
Ray Tracing!
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Ampere (2020)

Sparsity!
BF16 & TF32!
156 / 312 TFLOPS (TF32) (dense/sparse)
312 /624 TFLOPS (FP16 or BF16)
624 / 1,248 TOPS (Int 8)

1,248 / 2,496 TOPS (Int 4)

2TB/s (HBM)

400W

3.12 TOPS/W (Int 8)
6.24 TOPS/W (Int 4)




Structured Sparsity

Sparse Tensor
Core

Select

T

Input activations

§

Dot-product

[CJ= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Dense trained q
weights ‘

Fine-tune weights

NVIDIA A100 Tensor Core GPU Architecture whitepaper

Compress

=>

Non-zero |ndices Output activations
data values
Fine-tuned sparse and
compressed weights


https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Gains from

Number representation
FP32, FP16, Int8
(TF32, BF16)

Complex instructions
DP4, HMMA, IMMA

Process
28nm, 16nm, 7nm
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Specialized Instructions Amortize Overhead

Operation Energy** Overhead®
HFMA 1.5pJ 2000%
HDP4A 6.0pJ 500%
HMMA 110pJ 22%
MMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch — 30pJ
**Energy numbers from 45nm process




Accelerators



All have a matrix-multiply unit fed by a memory hierarchy.



NVIDIA DLA Sparsity

Compression
Data gating
Winograd

Command Interface

3

Tensor Execution Micro-controller

t 3

Memory Interface

Open-sourced at nvdla.org



EIE (2016)

Sparsity
Mat Hardware CSR
2 Coding
B o Scalar Quantization

Ptr_Even Arithm Ptr_Odd

SpMat

Efficient Inference Engine
for compressed
fully connected layers
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Eyeriss (2016)

Tiling (dataflows)

Global ZEG?;?%/ Welght stationary
— — - S [
ES=cS-csn oo ol Row stationary

Spatial tiling with
optimized dataflows
for CNNs

I | B |
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*DRAM*

| IARAM I Neighbors
(sparse)
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Optimized PE for
accelerating compressed
Sparse CNNs

NVIDIA.

SCNN (2017)

Sparsity
Outer product
Scatter-Add



SIMBA (RC18) (2019)

Scalable
MCM
Hierarchical Mesh

Tiled PEs in a scalable MCM
128 TOPS
0.11 pJ/Op

<A NVIDIA.
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MAGNet System

[Venkatesan et al., ICCAD 2019]

MAGNET

Configurable using synthesizable SystemC, HW generated using HLS tools
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MAGNET RESULTS

Design Space Exploration for ResNet-50

VectorSize=16, |APrecision=8, WPrecision=8
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VS-Quant

Per-Vector Scaled Quantization for Low-Precision Inference

TR, S' S” vecsize—1
X Vint * Sing * N . . . .
g 0% Vi St F D= D w®a,® |s.()sa()
quant S ; -
S i=0
Weights Input Activation
| |

Weight
Collector
VectorSize S Sw Sa
W, 44 A, N
KxPxQ g& gﬂb ........ g \?'/
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Input activation Weight Output activation |Rounding|
Kx R xS x ceil(C/V) integer scale factors _’C’P‘
K floating-point scale factors v
Fine-grained scale factors per vector Modified vector MAC unit for VS-Quant

Works with either post-training quantization or quantization-aware retraining!
[Dai et al., MLSYS 2021]



Energy, Area, and Accuracy Tradeoff

BERT-base and BERT-large on SQUAD

BERT-Base BERT-Large
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* Amount of scale rounding
varies among design points

Weight Width / Activation Width / Weight Scale Width / Activation Scale Width
[Dai et al., MLSYS 2021] “.” indicates per-channel scaling
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Accelerators

Start with a matrix multiplier
Tiling (dataflow)

— Maximize re-use from memory hierarchy

— Number of levels and size of each level are free variables
Sparsity

— Compression (memory and communication)

— Data gating

— Sparse computation

Number representation

— Coding (makes math expensive)

— Scaling (put the bits where the do the most good)

— Scale by the vector



Logarithmic Numbers



Energy Breakdown

Th

= Input Buffer

= Weight Buffer

= Accumulation Buffer

» Accumulation collector
= Datapath + MAC

®m Data Movement



INnt32

Int16

Int8

Number Representation

Range

1038 - 1038

6x10° - 6x10*

0 —2x10°

0 — 6x104

0-127

Accuracy

.000006%

.05%

33%

33%

33%



Logarithmic Numbers

Range Accuracy

10-38 - 1038 33%

6x10°-6x10° 4%

0-127 33%

Optimum but expensive



v = —15petef

1 4 3

Log4.3 S ElI | EF

Dynamic Range 10°
WC Accuracy 4%

Vs Int8 — DR 102
WC Accuracy 33%

Can apply offset to El to represent any range of
16 integers, e.g., -8 to 7 (scaling)

Numbers near zero need special treatment
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Computer Multiplication and Division Using
Binary Logarithms®

JOHN N. MITCHELL, Jr.,f ASSOCIATE, IRE

Summary—A method of computer multiplication and division is
proposed which uses binary logarithms. The logarithm of a binary
number may be determined approximately from the number itself by
simple shifting and counting. A simple add or subtract and shift
operation is all that is required to multiply or divide. Since the log-
arithms used are approximate there can be errors in the result. An
error analysis is given and a means of reducing the error for the
multiply operation is shown.

I. INTRODUCTION
MULTIPLICATION and division operations in

computers are usually accomplished by a series
of additions and subtractions. and shifts. Con-

be binary logarithms (to the base two). Since log;y V is
usually written log N and log, N is written In N, to
avoid ambiguity and the necessity of writing the sub-
script a similar notation will be adopted in this paper
to imply logs N:

lg N =log: N.

A table of binary logarithms is shown in Fig. 1, and
the familiar logarithmic curve is plotted in Fig. 2. Sup-
pose the points where Ig N is an integer are connected
by straight lines. The dashed lines in Fig. 2 describe the

Ter 1 nTr . N T 1



Convolutional Neural Networks using Logarithmic Data Representation

Daisuke Miyashita DAISUKEM @ STANFORD.EDU

Stanford University, Stanford, CA 94305 USA
Toshiba, Kawasaki, Japan

Edward H. Lee EDHLEE @ STANFORD.EDU
Stanford University, Stanford, CA 94305 USA

Boris Murmann MURMANN @STANFORD.EDU
Stanford University, Stanford, CA 94305 USA

Abstract (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
He et al., 2015) but have steadily grown in computational

Recent advances in convolutional neural net- complexity. For example, the Deep Residual Learning (He

waorke have coancdered madel coaomnlevitv and

Integer log only — 22.0
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Why Log

* Lower error where it matters
« Same accuracy with fewer bits

* Multiplies become adds



Multiply energy reduced by 10x Log6 Int8

What about the add?

Log adds are expensive 6b add 20fJ 8b mult 200fJ
Shift a constant and add

? 24b add 100fJ
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(57) ABSTRACT

Neural networks, in many cases, include convolution layers
that are configured to perform many convolution operations
that require multiplication and addition operations. Com-
pared with performing multiplication on integer, fixed-point,
or floating-point format values, performing multiplication
on logarithmic format values is straightforward and energy
eflicient as the exponents are simply added. However, per-
forming addition on logarithmic format values is more
complex. Conventionally, addition is performed by convert-
ing the logarithmic format values to integers, computing the
sum, and then converting the sum back into the logarithmic
format. Instead, logarithmic format values may be added by
decomposing the exponents into separate quotient and
remainder components, sorting the quotient components
based on the remainder components, summing the sorted
quotient components using an asynchronous accumulator to
produce partial sums, and multiplying the partial sums by
the remainder components to produce a sum. The sum may
then be converted back into the logarithmic format.
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Numbers being summed are one hot
Two bits of accumulator toggle on average
vs half of bits toggling for normal add

Wasteful to clock a 24b register



a9y United States
a12) Patent Application Publication (o) Pub. No.: US 2021/0056399 A1l

Dally et al.

(43) Pub. Date: Feb. 25, 2021

(54)

(71)

(72)

(21)
(22)

(63)

(31)

ASYNCHRONOUS ACCUMULATOR USING
LOGARITHMIC-BASED ARITHMETIC

Applicant: NVIDIA Corporation, Santa Clara, CA
(US)

Inventors: William James Dally, Incline Village.
NV (US); Rangharajan Venkatesan,
San Jose, CA (US); Brucek Kurdo
Khailany, Austin, TX (US): Stephen
G. Tell, Chapel Hill, NC (US)

Appl. No.: 16/750,917

Filed: Jan. 23, 2020

Related U.S. Application Data

Continuation-in-part of application No. 16/549,683,

filed on Aug. 23. 2019.

Publication Classification

Int. Cl.
GO6N 3/063 (2006.01)
GO6F 17/16 (2006.01)

(52) IS €1
CPC GOG6N 3/063 (2013.01); GOGF 17/16
(2013.01)

(57) ABSTRACT

Neural networks. in many cases, include convolution layers
that are configured to perform many convolution operations
that require multiplication and addition operations. Com-
pared with performing multiplication on integer, fixed-point,
or floating-point format values, performing multiplication
on logarithmic format values is straightforward and energy
eflicient as the exponents are simply added. However, per-
forming addition on logarithmic format values is more
complex. Conventionally, addition is performed by convert-
ing the logarithmic format values to integers, computing the
sum, and then converting the sum back into the logarithmic
format. Instead. logarithmic format values may be added by
decomposing the exponents into separate quotient and
remainder components, sorting the quotient components
based on the remainder components, summing the sorted
quotient components using an asynchronous accumulator to
produce partial sums, and multiplying the partial sums by
the remainder components to produce a sum. The sum may
then be converted back into the logarithmic format.
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Big Picture

W a XOR of sign bits selects inc/dec (0/1)

Integer bits of sum (x) select bit position
to increment

Fraction bits of sum (y) select which
accumulator to increment

Accumulator
Array




Energy Relative to Full-Adder Bit

Symbol | FA Equiv

C 2 Carry-Lookahead adder bit

M 1.6 Multiplier partial product bit (b2 of these in a b-bit mult)
R 2 Register bit

W 0.1 Wire width of full-adder bit



Energy Comparison

Log6 MAC Unit

M- M-

6b CL Adder

2 Acc Bits Toggle 4R 8
Select Wires 2(32+32)W 13
TOTAL 6C+4R+128W 33

|
inc/dec t ‘ ‘

X y

Int8 MAC Unit
8b Multiplier 102
24b CL Adder 24C 48
24b Reg 24R 48
TOTAL 64M+24(R+C) 198

N/
N/
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Conversion

int




Conclusion



Conclusion

GPU inference performance doubling every year

— Better number representation, FP16, Int8, Int4, ...
— Complex instructions, DP4A, HMMA, IMMA

— Sparsity
— Plumbing

Accelerators experiment with new techniques
— Sparsity, Tiling (data flows), Number Representation

Log Numbers give more "bang per bit”
— Same accuracy with fewer bits (less memory area, energy)
— Very low energy arithmetic

Asynchronous accumulators

— Log results in one-hot add into accumulator
— Only clock the bits that toggle
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Log vs FP
« Slightly better accuracy

— Constant maximum error across range
— FP error maximum at start of each subrange

* Much simpler arithmetic
— FP still needs a small multiplier
— FP needs normalization
— Have to do a real add — not just an increment/decrement



PASCAL GP100

Power Regulation
HBM Stacks

AN

Backplane Connectors

10 TeraFLOPS FP32
20 TeraFLOPS FP16
16GB HBM - 750GB/s
300W TDP
67GFLOPS/W (FP16)
16nm process

160GB/s NV Link
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