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Science + HPC AI + Cloud



Applications 

Where is ML being used in Science?

And what is different? 



Opportunities for ML in Science

Analyze
• Classify
• Regression
• Cluster and denoise
• Extract features

Accelerate
• Design
• Surrogate models
• Inverse problems
• Generative models

Automate
• Self-driving lab
• Instrument control
• Smart infrastructure
• Robotics



Cross-cutting themes for ML in Scienc

Interpret-
ability

Inverse 
Design

Physics-
aware 

Learning

Uncertainty 
Quantifi-
cation

Learning 
across 
scales

Complex, 
3D+, sparse 

data
Transfer 
learning 
across 

instruments 
Fairness

Control of 
experiments

Federated 
learning on 

sensors

Thanks to Ben Nachman for several examples



Data Analytics via Supervised Learning

Slide source  Prabhat, LBNL

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!

Classification Classification
+ Localization Object Detection Instance 

Segmentation



CNNs for 3D Climate Simulation Data on HPC

• Deep learning results are smoother than heuristic labels
• Achieved over 1 EF peak on OLCF Summit: Gordon Bell Prize in 2018

Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett Phillips, Ankur 
Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat, Michael Houston

Predicted Extreme Weather Ground Truth Extreme Weather



A network with 3D translation- and 3D 
rotation-equivariance

CNNs for Materials with Physical Laws 

TR
A

IN
TE

ST
Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley

Physics-aware learning



Inverse Design with ML
Designing materials, proteins, and small molecules with ML

High-dimensional 
design using 
machine learning

Clara Fannjiang and Jennifer Listgarten at NeurIPS ‘20

Search for a molecules using an 
autofocusing generative model:
moves around the design space, 
guided by an oracle



Learning from sequence + graph structure 

Aditi S Krishnapriyan, Nicolas Swenson, Dmitriy Morozov, Katherine Yelick, Aydin Buluc

Graph 
Structure

Persistence 
NetworkSequence

Function

Model AUPR
— PersGNN 0.82

— GNN 0.75
— PersNet 0.63

— MLP (Baseline) 0.22

Figure 2: Precision-recall curves for predicting molecular function (MF) gene ontology (GO)
terms. Precision-Recall curves for four models: the "baseline" model (a multi-layer perceptron)
trained on protein contact maps, a persistence network (PersNet) trained on the persistence diagrams
created from the 3D atomic coordinates of each protein, a graph neural network (GNN) trained
on protein contact maps, and PersGNN, our model that combines PersNet and the GNN. For each
method, we independently train ten models and ensemble them by computing the average probability
score for each class. Area under the precision-recall curve (AUPR) scores on the test set for each
method are shown to the right, where higher scores indicate better accuracy. Our model, PersGNN,
achieves the highest AUPR score.

3 Results and Discussion155

Our hybrid method, PersGNN, outperforms both GNN and PersNet on their own, and significantly156

outperforms the baseline MLP that is given the same information as the GNN. The performance of157

each method, measured in area under the precision-recall curve (AUPR) for molecular function (MF)158

gene ontology (GO) terms is shown in Figure 2. PersGNN has an AUPR score 9.3% higher than159

the GNN, the next best model. To focus our study on learning from protein structure, we have not160

included highly expressive sequence models, such as BLAST or 1D CNNs, nor did we use language161

models to compute amino acid embeddings. The GNN, however, can learn to embed amino acids162

through a residue’s local neighborhood in the graph structure. PersNet is able to capture further163

topological information through a protein’s 1D and 2D persistence diagrams. When combined, the164

GNN and PersNet capture complementary information as indicated by the higher AUPR score, thus165

creating a more complete representation of the protein structure.166

In Figure 3, we compute average F1 scores aggregated over different GO categories, which are167

grouped at various levels of the MF GO hierarchy. F1 scores are a measure of the model accuracy,168

calculated from the precision and recall, where higher F1 scores indicate that the model was able to169

successfully classify more proteins. As we see in Figure 3, the PersGNN model has consistently high170

F1 scores across GO categories, and performs better than the other methods on every GO category171

and almost every individual GO term.172

Figure 4 shows the effects of training set size (the number of times each GO term appears in the173

training dataset) against model accuracy, again represented via F1 scores. As we see, PersGNN174

achieves high F1 scores even on GO terms with fewer training examples, while other models like the175

MLP perform poorly in this regime. The ability of PersGNN to make accurate predictions even with176

a low training set size is optimistic, as it is indicates the model is making good use of the protein177

structure information. Moreover, while there are millions of raw amino acid sequences, there are far178

fewer available protein structures, meaning achieving high model accuracy with lower amounts of179

data is especially important here.180

Our method, PersGNN, more accurately predicts MF GO terms compared to other structure-based181

methods, including across different categories and with fewer examples. This motivates a further182

investigation into its performance. Future work in this area should study PersGNN’s performance183

on all three GO term categories (Biological Process and Cellular Component). In addition, it is184
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Which proteins are good 
catalysts, bind to small 
molecules, etc.



Graph NNs for Neutrino classification

• Apply graph convolutional techniques to irregular, 3D detector grid
• Increase sensitivity of IceCube detector: 6.3x more events
• And improve Signal-to-Noise ratio by 3x

Contributors: Nick Choma, Joan Bruna, Federico Monti, Michael Bronstein, Spencer 
Klein, Tomasz Palczewski, Lisa Gerhardt, Wahid Bhimji and IceCube collaboration

Pattern of light deposition for muons  bundles 
(left) and a high-energy single muon (right). 



Fairness in Physics 35Overview
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Figure 6. Left: Distributions of signal and background events without selection. Right: Back-
ground distributions at 50% signal e�ciency (true positive rate) for di↵erent classifiers. The un-
constrained classifier sculpts a peak at the W -boson mass, while other classifiers do not.

Figure 7. Decorrelation versus background-rejection power showing that MoDe[0] performs sim-
ilarly to existing state-of-the-art decorrelation methods.

3.2.3 Beyond Decorrelation

Moving beyond decorrelation the 1/JSD metric is no longer relevant. Figure 6 shows that

neither MoDe[1] nor MoDe[2] sculpts a peaking structure in the background, but their

1/JSD values are small since neither seeks to decorrelate from the mass. Therefore, we

replace the 1/JSD metric with the signal bias induced by the classifier selection, which

is what actually matters when searching for resonant new physics. Specifically, we use

the signal estimators obtained by fitting the selected background-only samples to a simple

polynomial function as proxies for the signal biases. These are divided by their uncertainties

such that values of roughly unity are consistent with no bias, while values significantly larger

– 13 –

O. Kitouni, BPN, C. Weisser, M. Williams, 2010.09745

Real world example: the search for Lorentz-
boosted W bosons at the Large Hadron Collider

W boson 
mass

MoDE[0] enforces independence, [1] is linear, [2] is monotonic quadratic, … 

Background only

LH
C

 s
im

ul
at

io
ns

Separating signal from noise in the search for Lorentz-boosted W bosons at 
Large Hadron Collider

Signal and background events 
without selection. 

O. Kitouni, B. Nachman, C. Weisser, M. Williams, 2010.09745

Back-ground distributions at 50% 
signal efficiency (true positive rate) 
for different classifiers. 



GANs to Build Scientific Data

CosmoGAN: Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, Jan M. Kratochvil

Generate convergence maps of weak gravitational lensing, to help in 
understanding the physical laws governing the universe.



Learning Relationships with Graphical Models

Koanantakool, Buluc, Morozov, Oliker, Yelick, Oh, AISTAT 2018.

91K x 91K Sample Covariance matrix

• 91K data points (each 2mm3)
• 5K time points (0.7 secs for 2 hrs)
• Averaged over 1,200 subjects

Discovering Regions and Co-
Regions of Brain Activity from fMRI



Iterative Random Forest
High dimensional, sparse data

{X2, X7, X11}

{X1, X2, X11} {X3, X9}

{X9, X10, X11}{X1, X11}

{X3, X7, X11}

{X1, X11} {X3, X9}

{X3, X9, X10}{X2, X11}

Learning Mechanistic Models
Soil	Types EC	

(soil/salinity/moisture) P K

USDS	Soil	Map Geophysics Soil	sampling	+	EC	map

4D Virtual Farmland 
• Hyperspectral imaging
• Environmental sensors
• Microbiome sequencing

• Design microbial amendments

Schaettle, K. B.;  Falco, N.;  Ulrich, C.;  Dafflon, B.;  Wainwright, H. M.;  Brown, J. B.



Robust, interpretable, explainable methods

• Our goal for interpretability is methods that are useful for science and 
engineering applications

Graph based on image from: David Gunning, DARPA Explainable AI (XAI) Program

Interpretability

Statistical 
Models

SVMs

AOGs

Graphical 
Models

Bayesian 
Belief Nets

SRL
CRFs HLNs

Markov 
Models

CRFs

Other 
Ensemble 
Strategies

Random 
Forests

Rule-Based 
Methods

Neural 
Nets

Deep 
Learning



Computing and Data 
Facilities

User Community

Embedded Sensors

Experimental 
Facilities

Interconnected facilities 
where data is acquired, 
stored, analyzed and served

Sequencers

Light Sources

Telescopes

Particle 
Detectors

Environmental 
Sensors

Edge Computing and Automation in Science

Edge Computing 
for Science

Microscopes



Using NLP on scientific publications

Word2vec’s representation of the 
elements, projected onto two dimensions

Analyze 3.3 million abstracts from materials science papers

Vahe Tshitoyan, Leigh Weston, John Dagdelen, Anubhav Jain



Machine Learning at Berkeley Lab

https://ml4sci.lbl.gov



Cross-cutting application themes

Interpret-
ability

Inverse 
Design

Physics-
aware 

Learning

Uncertainty 
Quantifi-
cation

Learning 
across 
scales

Complex, 
3D+, sparse 

data

Transfer 
learning Fairness

Control of 
experiments

Federated 
learning on 

sensors 

Thanks to Ben Nachman for several examples



Architectures for ML in Science



Moore’s Law

It’s hard to think 
exponentially

But it’s also hard to stop



Communication Dominates

flop (g)

network bandwidth (b)

network latency (a)

memory latency (a2)

DRAM  bandwidth (b2)

Time =
# flops * g +

# message *  a +
# bytes comm  * b +

# diff memory locs * a2  +
#  memory words * b2

Data from Hennessy / Patterson, Graph from Demmel



Data Movement is Expensive

Image: http://slideplayer.com/slide/7541288/

120 pJ

2000 pJ

250 pJ

~2500 pJ

100 pJ

6 pJ

Cost to move data off chip 
to a neighboring node

Cost to move data off chip 
into DRAM

Cost to move off-chip, 
but stay within the package (SMP)

Cost to move data 20 mm on chip

Cost of a typical floating point operation

Cost to move data 1 mm on-chip

Hierarchical energy costs.



Trend Toward Specialization 

Google designs its own 
Tensor Processing Unit 
(TPU)

Intel buys deep 
learning startup, 
Nervana

NVIDIA builds deep 
learning appliance 
with P100 Tesla’s FPGAs in Microsoft cloud

RISC-V is an 
open 

hardware 
platform

Specialization Spectrum

Full 
Custom

Open 
ISA

FPGA FPGA + 
standard ops

Old 
GPU

GPGPUs Simple 
cores

High end 
cores

China (Sunway), Japan (ARM), and Europe/Barcelona (RISC-V) are doing this in HPC





Are CNNs the only application?

Cautionary tale from HPL



Exascale Architecture Plans (2008)

100x 
Faster 
clocks

100x 
more  
cores

Accelerators 
(GPUs)



Exascale Architecture Plans (2021)

Pre-exascale
HPE AMD+NVIDIA

Exascale
HPE AMD+AMD

Exascale
HPE Intel+Intel

US DOE Office of Science Systems
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Nvidia Turing

Nvidia Ampere
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Accelerators in the Top500 500



Domain-Specific Code Generators 
for specialized hardware 

0% 20% 40% 60%

Adaptive

Dense LA

Monte Carlo

Particles

Spectral

Sparse LA

Structured Dense Linear Algebra Atlas, Magma

Spectral Algorithms FFTW, Spiral

Sparse Linear Algebra OSKI, Bernoulli

Structured Grids Halide, Orio, 
Snowflake, 

Unstructured Grids GraphIT

Particle Methods

Alignment SALSA

NERSC survey: what motifs do they use? What code generators do we have?

Unstructured



Specialization, Yes            Accelerators, No!

More cores More data 
parallelism

Narrow data 
types

More 
memory 
spaces

CPUs in 
control

CPUs 
communicate

Memory

CPUGPU

Memory

CPU GPU



Put Accelerators in Charge of Communication

CPU CPU GPU

GPU

CPU

Architecture and software are not yet structured for accelerated-initiated 
communication (Summit with NVLink between Power9 CPUs and NVIDIA GPUs)

Taylor Groves et al

CPU



Science + HPC AI + Cloud



Google 1997



NERSC 1996

Cray T3E 900: 460 Gflop/s
850 GB of disk 106 TB Data 

archive  



Cloud vs HPC
Cloud HPC
Focus on storage Focus on computing (flop/s)

Cheap commodity components High end components (some specialization)
Commodity networks High performance networks
On-node disks (air cooled) Separate storage (compute liquid cooled)

Resilience, replicated SW Integrated & efficient SW
Pay as you go Purchased for mission; pay in “hours”
< 50% utilization > 90% utilization
On-demand access Large jobs wait in queues 
Multiple jobs per node Dedicated nodes
Evergreen procurement ~4 year procurement cycles

Policy and 
business 

model

E.g., see G. Guidi, M. Ellis, A. Buluc, K. Yelick, D. Culler, 2021



Algorithms for ML in Science

A dive into microbial science

Parallelism Motifs



Understanding and engineering 
the microbiome



Who, what, why, how?

ExaBiome: Exascale Microbiome Analysis



Microbiome analysis: metagenome

Microbial 
community

Contigs

Sequence

Reads

Sample

Binning Proteins

?



Terabyte to Petabyte Metaegnomes

What happens to microbes after a wildfire? 
(1.5TB)

What at the seasonal fluctuations in a 
wetland mangrove? (1.6 TB)

How do microbes affect disease and growth of 
switchgrass for biofuels (4TB)

What are the microbial dynamics of 
soil carbon cycling? (3.3 TB)

Combine genomics with isotope tracing methods for improved 
functional understanding (8TB)

JGI-NERSC-KBase FICUS projects 



Big Data, Big Iron à Better Science

Multiassembly: assembling many samples separately
Coassembly: assembling many samples together

S. Hofmeyr, R. Egan, E. Georganas, A. Copeland, R. Riley, A. Clum, E. Eloe-Fadrosh, S. Roux, E. Goltsman, A. Buluç, D. Rokhsar, L. Oliker, K. Yelick, 2020



Analytics vs. Simulation Kernels: 
7 Dwarfs of Simulation 7 Giants of Big Data
Particle methods Generalized N-Body
Unstructured meshes Graph-theory
Dense Linear Algebra Linear algebra
Sparse Linear Algebra Optimization
Spectral methods Integrations
Structured Meshes Alignment
Monte Carlo methods Basic Statistics

NRC Report + our paperPhil Colella 

Hashing
Sorting

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020



Hashing

hashing sorting

graphs
sparse 
matrix

alignment

dense 
matrix

generalized 
n-body



Universally useful: Hash Tables of K-Mers

Make hash table of k-mers

1-sided comm or irregular 
all-to-all + memory

AAC     TGA     CCG
ACC     GAT     CGT
CCT     ATT     GTC



K-mer Counting on GPU HPC

64 nodes (2688 CPU cores)
64 nodes (384 GPUs)

• Now communication-bound
• Use clever hashing (minimizers) and aggregation (supermers)

reduce number of messages (latency) and volume (bandwidth)

Summit (with NVIDIA V100)



Generalized 
N-Body

hashing sorting

graphs
sparse 
matrix

alignment

dense 
matrix

generalized 
n-body



Set Alignment is a Sparse All-to-All
Run expensive alignment on all pairs with a common k-mer



Avoid Communication, Maximize Parallelism
Compute on all pairs of particles or strings, or…

Obvious solution

16 particles on 8 processors
Pass all particles around (p steps)

c = 4 copies of particles
8 particles on each

Better solution

Decreases 
• #messages by factor c2,
• #volume sent by factor c



Less Communication..
Cray XE6; n=24K particles, p=6K cores

Dow
n is good

96% reduction in 
shift time (red)



1D vs 2D Algorithm on DNA “overlap”
diBELLA 1D vs 2D 

Low
erisBetter

G. Guidi, O. Selvitopi†, M. Ellis, L. Oliker, Y, A. Buluc



Graphs and 
Sparse Matrices

(unsupervised learning)

hashing sorting

graphs
sparse 
matrix

alignment

dense 
matrix

generalized 
n-body



Protein Clustering with Sparse Matrices

Iteration 1 Iteration 2 Iteration 3

Image source: http://micans.org/mcl/

Initial network

• Similarity Matrix: “Many-to-many” protein alignment 
• Expansion: Square matrix, pruning small entries, dense columns
• Inflation: element-wise powers

Input: Adjacency matrix A (sparse)

Oguz Selvitopi; Md Taufique Hussain; Ariful Azad; Aydın Buluç
PASTIS + HipMCL



Sparse Matrix Algorithms

HipMCL Optimized HipMCL Optimized HipMCL
(with overlap)
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Distributed memory enabled first-of-kind science
12.4× faster with GPUs



Graphs and 
Sparse and 

Dense Matrices
(supervised learning)

hashing sorting

graphs
sparse 
matrix

alignment

dense 
matrix

generalized 
n-body



• ATH l -1 sparse-dense matmul (SpMM)
• (ATH l -1) Wl dense-dense matmul (DGEMM)
• SpMM is the bottleneck, not DGEMM!

Bottleneck in GNN Training
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Communication-Avoiding Matrix Multiply

x
z

z

y

x
y • 2D algorithm: never chop k dim

• 3D: Assume + is associative; 
chop k, which is à replication 
of C matrix

k

j

i Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

for i
for j

for k
B[k,j]  …A[i,k] … C[i,j] …



Avoiding Communication in GNNs

1.5D c  =

1D 2D 3D1.5D

Tripathy, Yelick, Buluc, Reducing Communication in 
Graph Neural Network Training, SC’20

0
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36 64 100

Protein

sparse bcast
dense bcast
reduce
compute



Dense 
Matrix 
Vector

(BLAS2)

Sparse -
Sparse 
Matrix 

Product
(SpGEMM)

Sparse Matrix 
Times 

Multiple 
Dense Vectors

(SpMM)

Sparse 
Matrix-
Dense 
Vector 
(SpMV)

Sparse 
Matrix-
Sparse 
Vector 

(SpMSpV)

Increasing arithmetic intensity

Graphical 
Model 

Structure 
Learning (e.g., 

CONCORD)

Clustering 
(e.g., MCL, 

Spectral 
Clustering)

Logistic 
Regression, 

Support 
Vector 

Machines

Dimensionality 
Reduction (e.g., 
NMF, CX/CUR, 

PCA)

Machine Learning Mapping to Linear Algebra
Deep Learning 
(Convolutional 
Neural Nets)

Sparse -
Dense 
Matrix 

Product
(SpDM3)

Dense 
Matrix 
Matrix 

(BLAS3)

Aydin Buluc, Sang Oh, John Gilbert, Kathy Yelick



Take-Aways
u Applications

u Every domain of science
u Analysis, Acceleration, Automation
u Science emphasizes quantifying uncertainties, interpretability, etc.

u Architectures
u Specialization will be increasingly important
u Communication will dominate; Need better integration, lower overheads
u Cloud and HPC differ on the business model  

u Algorithms
u Irregular, fine-grained problems in data and ML, not just simulation
u Avoid communication to match hardware


