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Why was PyTorch successful?

I N  M Y  O W N  O P I N I O N

• Performance? No, original design allowed 20% slowdown for a better API 
• Innovative new algorithm? No, adopted autograd model popular in Chainer, DyNet, and autograd package



Why was PyTorch successful?

I N  M Y  O W N  O P I N I O N

Laser-focused on usability



Eager mode by default                          +

L A S E R  F O C U S E D  O N  U S A B I L I T Y

Bindings for SOTA algorithms: 
CUDNN, BLAS, Intel MKL 



< 24 hour response time on GitHub issues and forums

L A S E R  F O C U S E D  O N  U S A B I L I T Y



At the time, competitors gained little with graph-mode but did reduce usability

L A S E R  F O C U S E D  O N  U S A B I L I T Y

[Paszke et al, NeurIPS 2019, https://arxiv.org/abs/1912.01703]

https://arxiv.org/abs/1912.01703


Productivity vs(?) Performance



[Hernandez and Brown, https://arxiv.org/abs/2005.04305]

Productivity enables Performance

https://arxiv.org/abs/2005.04305


The Usability Crisis of Accelerators



Don’t compromise usability for potential 
performance gains. 

Empower users to fix any potential 
performance issues with incrementally 
increasing effort.



0 1  
C A S E  S T U D Y :  F I X E D  S I Z E S  
A N D  U S A B I L I T Y  
0 2  
U P C O M I N G  T O O L S  I N  
P Y T O R C H  F O R  U S A B I L I T Y

T H I S  T A L K



R E A L  N E T W O R K S  D O  N O T  

A LWAY S  H AV E  F I X E D  S I Z E S  

…  B U T  M A N Y  L I B R A R I E S  D O



Scaling - have to check accuracy

Padding - wastes compute
Batch

Vision: Images are not the same size, but batches 
are rectilinear



But conv is the same at each pixel

W*

Should the conv primitive have a non-rectilinear batch instead?



Text: Sequences are not the same length
[“The”, “sun”, “is”, “very”, “bright”]

[“Let’s”, “be”, “friends”]

[“It”, “was”, “for”, “you”]

B

T

F

Wq

Wk

Wv

F

F*

*

*
Transforms have lots of per-word arithmetic



Effective Transformer:  
flatten/unflatten for per-word operations

https://github.com/bytedance/effective_transformer

__global__ void compress_bert_input( 
    const __half* from_tensor, const int* mask, const int* prefix_sum,  
    __half* to_tensor, int* batch_idx, int* word_idx, 
    int batch_size , int seq_len, int hidden_dim) { 
  int bid = blockIdx.y;  // batch 
  int wid = blockIdx.x;  // word  
  int tid = threadIdx.x; //  
   
  /// 1. count pos for from tensor  
  int mask_idx  = bid * seq_len + wid; 

  if (mask[mask_idx] > 0.5) { 
    int valid_idx = prefix_sum[mask_idx]; 

    /// 2. write batch id and word id for each word 
    if (tid == 0) { 
      batch_idx[valid_idx] = bid; 
      word_idx[valid_idx]  = wid; 
    } 
     
    /// 3. copy src data 
    half2* src_ptr = (half2*)from_tensor; 
    half2* dst_ptr = (half2*)to_tensor; 
    int src_idx = mask_idx  * hidden_dim + tid; 
    int dst_idx = valid_idx * hidden_dim + tid; 
    dst_ptr[dst_idx] = src_ptr[src_idx]; 
  } 
}



Effective Transformer:  
flatten/unflatten for per-word operations

https://github.com/bytedance/effective_transformer



+ Reshape 
Custom Op

+ Reshape 
Custom Op

+ Reshape 
Custom Op

+ Reshape 
Custom Op

It is harder to add custom behavior in deeper stack

+ Reshape 
Custom Op

PyTorch 
Eager

PyTorch 
Eager

TorchScript ONNX Accelerator 
Graph Library

1 custom API to understand

4 custom APIs to understand: 
Optimistic case: possible, but can degrade optimization techniques 
Pessimistic case: layer doesn’t allow for a the custom op, user is blocked.



Vocab Reduction: varying vocab size

W

F

V

* * * *

v_inference = {v_i if score(v_i, input_tokens) > threshold}

[L’Hostis et al., https://arxiv.org/abs/1610.00072]

CPU decoding up to 10x faster.

https://arxiv.org/abs/1610.00072


A surprising amount of dynamic behavior and sizes 
occur in real world models.

So when is it ok to restrict dynamic behavior to get 
better performance?



—  Add restrictions when there are already-realized performance gains. (e.g. 30% 

slower without using half precision) 

—  When there are theoretical gains (e.g. if sizes are known we can allocate memory 

ahead of time, and do layout planing), err on the side of usability.

R U L E S  O F  T H U M B  F O R  R E D U C I N G  U S A B I L I T Y

Why? There are 10x more external than internal developers, and each restriction 

prohibits them from exploring application-specific optimizations or adds friction 



U S A B I L I T Y  I N  P Y T O R C H  

F O R  P R O D U C T I O N



—  Capture the structure of PyTorch programs to do custom transforms 

—  Create self-contained archives of trained PyTorch programs for transfer learning, 

or to deploy in a production environment 

— Serve models as part of a service (e.g. a language translation server) 

— Improve the performance of these models

U S E R  S T U D Y  O F  T O R C H S C R I P T  U S E R S

Can we decouple these uses to make each task easier?



torch.fx    capture and transform PyTorch programs directly in Python

class MyModule(torch.nn.Module): 
  def __init__(self): 
    super().__init__() 
    self.param = torch.nn.Parameter(torch.rand(3, 4)) 
    self.linear = torch.nn.Linear(4, 5) 

  def forward(self, x): 
    return self.linear(x + self.param).clamp(min=0.0, max=1.0) 

module = MyModule() 

from torch.fx import symbolic_trace, GraphModule 
# Symbolic tracing frontend - captures the semantics of the module 
symbolic_traced: GraphModule = symbolic_trace(module)

# High-level intermediate representation (IR) - Graph representation 
print(symbolic_traced.graph) 
""" 
graph(x): 
    %param : [#users=1] = self.param 
    %add_1 : [#users=1] = call_function[target=<built-in function add>](args = (%x, %param), kwargs = {}) 
    %linear_1 : [#users=1] = call_module[target=linear](args = (%add_1,), kwargs = {}) 
    %clamp_1 : [#users=1] = call_method[target=clamp](args = (%linear_1,), kwargs = {min: 0.0, max: 1.0}) 
    return clamp_1 
"""



torch.fx

O V E R V I E W

S Y M B O L I C  T R A C I N G  

 
 
Construct IR by tracing the execution 
of a PyTorch model, similar to TF 
Autograph and JAX’s jaxpr tracing.

S I M P L E  H I G H - L E V E L  I R  

 
4 instruction IR that represents 
PyTorch programs using the publicly 
documented PyTorch operators.

P Y T H O N  C O D E  G E N E R A T I O N  

 
After you are done working with the 
IR, you can transform it back to 
Python code and use it in eager 
mode, or pass it TorchScript to 
improve performance



torch.package   self-contained eager-mode models

[https://arxiv.org/abs/2104.00254]

https://arxiv.org/abs/2104.00254


torch::deploy   a native library for running packaged models

[https://arxiv.org/abs/2104.00254]

https://arxiv.org/abs/2104.00254


— Capture the structure of PyTorch programs: torch.fx 

—  Create self-contained archives of trained PyTorch programs: torch.package 

— Serve models as part of a service: torch::deploy 

— Improve the performance of these models: TorchScript

P I C K  T H E  R I G H T  T O O L S  F O R  Y O U R  P R O B L E M

— e.g use torch.package to save a PyTorch model that uses TVM to construct 

custom operators 

— e.g use torch.fx to extract a PyTorch program, and write a transformer to run it 

on new accelerator hardware.

…  A N D  A D D  Y O U R  O W N  T O O L S  T O  T H E  E C O S Y S T E M



Keep framework users in the loop about hardware performance, empower them to 
fix performance issues with incrementally increasing effort.

As part of PyTorch, we are trying to build tools to increase usability and lower the 
friction of getting models into production. Let us know how we can help.



P Y T O R C H  E C O S Y S T E M  D AY  2 0 2 1

R E S O U R C E S

—  torch.fx https://pytorch.org/docs/stable/fx.html 

—  torch.package and deploy: https://arxiv.org/abs/2104.00254 

—  TorchScript: https://pytorch.org/docs/stable/jit.html

S P E C I A L  T H A N K S  T O  P Y T O R C H  C O N T R I B U T O R S  W O R K I N G  

O N  O U R  U S A B I L I T Y  P R OJ E C T S :  J A S O N  A N S E L ,  W I L L  

C O N S TA B L E ,  H O R A C E  H E ,  J A M E S  R E E D ,  M I C H A E L  S U O ,  

A N S L E Y  U S S E R Y,  A I L I N G  Z H A N G


